

Exercise 1.2

- Question 1
- Question 2
- Question 3
- Question 4
- Question 5
- Question 6
- Question 7
- Question 8
- Question 9
- Question 10
- Question 11
- Question 12

Exercise 1.2

Show that the function f: R_{*} → R_{*} defined by f(x) = ½ is one-one and onto, where R_{*} is the set of all non-zero real numbers. Is the result true, if the domain R_{*} is replaced by N with co-domain being same as R_{*}?

Solution:

Domain: \mathbf{R}_* is the set of all non-zero real numbers.

Codomain: \mathbf{R}_* is the set of all positive real numbers.

Injectivity (One-one):

A function f is injective if $f(x_1) = f(x_2)$ implies $x_1 = x_2$.

- Assume $f(x_1) = f(x_2)$.
- Then, $\frac{1}{x_1} = \frac{1}{x_2}$.
- By cross-multiplying, we get $x_2 = x_1$.

Therefore, $f(x) = \frac{1}{x}$ is injective.

Surjectivity (Onto):

A function f is surjective if for every element y in the codomain, there is an x in the domain such that f(x) = y.

For any $y \in \mathbf{R}_*$, we need to find an $x \in \mathbf{R}_*$ such that $\frac{1}{x} = y$.

• Solving for x, we get $x = \frac{1}{y}$, which is a non-zero real number.

Thus, every positive real number y has a pre-image $x = \frac{1}{y}$ in \mathbf{R}_* .

Therefore, $f(x) = \frac{1}{x}$ is surjective.

If the domain R_* is replaced by N (the set of natural numbers), and the codomain remains R_* :

- The function $f(x) = \frac{1}{x}$ where x is a natural number will always give a positive real number.
- However, not every positive real number can be written as $\frac{1}{x}$ for some natural number x because $\frac{1}{x}$ for natural x is always a rational number of the form $\frac{1}{n}$ where n is a natural number. Thus, it is not surjective onto the entire set of positive real numbers.
- 2. Check the injectivity and surjectivity of the following functions:

(i) $f : \mathbf{N} \to \mathbf{N}$ given by $f(x) = x^2$ Solution:

- Injectivity: Assume $f(x_1) = f(x_2)$. Then $x_1^2 = x_2^2$. Since x_1 and x_2 are natural numbers, this implies $x_1 = x_2$.
- Surjectivity: Not every natural number is a perfect square. For example, 2 or 3 is not a perfect square. Thus, it is not surjective.

(ii) $f: \mathbf{Z} \to \mathbf{Z}$ given by $f(x) = x^2$ Solution:

- Injectivity: $x_1^2 = x_2^2$ implies $x_1 = \pm x_2$. Therefore, it is not injective.
- Surjectivity: Not every integer is a perfect square. For example,
 -1 is not a perfect square. Thus, it is not surjective.

(iii) $f : \mathbf{R} \to \mathbf{R}$ given by $f(x) = x^2$ Solution:

- Injectivity: $x_1^2 = x_2^2$ implies $x_1 = \pm x_2$. Therefore, it is not injective.
- Surjectivity: Not every real number is a perfect square. For example, negative numbers are not perfect squares. Thus, it is not surjective.

(iv) $f: \mathbf{N} \to \mathbf{N}$ given by $f(x) = x^3$

Solution:

• Injectivity: Assume $f(x_1) = f(x_2)$. Then $x_1^3 = x_2^3$, which implies $x_1 = x_2$. Therefore, it is injective.

• Surjectivity: Not every natural number is a perfect cube. For example, 2 or 4 is not a perfect cube. Thus, it is not surjective.

(v) $f : \mathbf{Z} \to \mathbf{Z}$ given by $f(x) = x^3$ Solution:

- Injectivity: $x_1^3 = x_2^3$ implies $x_1 = x_2$. Therefore, it is injective.
- Surjectivity: Every integer can be expressed as a cube of some integer. Therefore, it is surjective.
- 3. Prove that the Greatest Integer Function $f: \mathbf{R} \to \mathbf{R}$, given by f(x) = [x], is neither one-one nor onto.

Solution:

- Not one-one: For any interval [n, n+1) where n is an integer, the function f(x) = n for all x in this interval. So, f(1.5) = f(1.9) = 1, but $1.5 \neq 1.9$. Therefore, f is not injective.
- Not onto: The function f(x) = [x] only maps to integers, so it is not surjective onto \mathbf{R} , the set of all real numbers.
- 4. Show that the Modulus Function $f : \mathbf{R} \to \mathbf{R}$, given by f(x) = |x|, is neither one-one nor onto.

Solution:

- Not one-one: For x = 2 and x = -2, f(2) = f(-2) = 2, but $2 \neq -2$. Therefore, f is not injective.
 - Not onto: The function f(x) = |x| maps to non-negative real numbers only, so it cannot map to negative real numbers. Therefore, f is not surjective.

5. Show that the Signum Function $f: \mathbf{R} \to \mathbf{R}$, given by

$$f(x) = \begin{cases} 1, & \text{if } x > 0 \\ 0, & \text{if } x = 0 \\ -1, & \text{if } x < 0 \end{cases}$$

is neither one-one nor onto.

Solution:

- **Not one-one**: For x = 1 and x = 2, f(1) = f(2) = 1, but $1 \neq 2$. Similarly, for x = -1 and x = -2, f(-1) = f(-2) = -1, but $-1 \neq -2$. Therefore, f is not injective.
- **Not onto**: The function f maps to $\{-1,0,1\}$, but the codomain here is **R**, so it is not surjective.
- 6. Let $A = \{1, 2, 3\}$ and $B = \{4, 5, 6, 7\}$. Let $f = \{(1, 4), (2, 5), (3, 6)\}$ be a function from A to B. Show that f is one-one.

Solution:

- Injectivity: Each element of A is mapped to a distinct element in B. Thus, f is injective.
- 7. In each of the following cases, state whether the function is oneone, onto, or bijective. Justify your answer.
 - (i) $f: \mathbf{R} \to \mathbf{R}$ defined by f(x) = 3 4x

Solution:

• Injectivity (One-one):

To check if the function is injective, assume $f(x_1) = f(x_2)$.

$$3 - 4x_1 = 3 - 4x_2 \implies -4x_1 = -4x_2 \implies x_1 = x_2$$

Hence, f(x) is injective.

• Surjectivity (Onto):

To check if the function is surjective, take any $y \in \mathbf{R}$ and solve for x in terms of y.

$$y = 3 - 4x \implies 4x = 3 - y \implies x = \frac{3 - y}{4}$$

Since for any $y \in \mathbf{R}$, there exists an $x \in \mathbf{R}$, the function is surjective.

• Conclusion:

The function is both injective and surjective, so it is bijective.

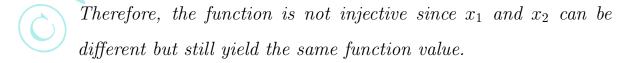
(ii)
$$f: \mathbf{R} \to \mathbf{R}$$
 defined by $f(x) = 1 + x^2$:

Solution:

• Injectivity (One-one):

Assume $f(x_1) = f(x_2)$.

$$1 + x_1^2 = 1 + x_2^2 \implies x_1^2 = x_2^2 \implies x_1 = \pm x_2$$



• Surjectivity (Onto):

The range of $f(x) = 1 + x^2$ is $[1, \infty)$, meaning the function only outputs values greater than or equal to 1. Thus, it is not surjective

onto \mathbf{R} , since it cannot produce negative values or values less than 1.

• Conclusion:

The function is neither injective nor surjective, so it is not bijective.

8. Let A and B be sets. Show that $f: A \times B \to B \times A$ such that f(a,b) = (b,a) is a bijective function.

Solution:

• Injectivity (One-one):

Suppose $f(a_1, b_1) = f(a_2, b_2)$. Then:

$$(b_1, a_1) = (b_2, a_2)$$

This implies $b_1 = b_2$ and $a_1 = a_2$, so $(a_1, b_1) = (a_2, b_2)$. Hence, the function is injective.

• Surjectivity (Onto):

For any $(b,a) \in B \times A$, there exists $(a,b) \in A \times B$ such that f(a,b) = (b,a). Therefore, f is surjective.

• Conclusion:

Since f is both injective and surjective, it is bijective.

9. Let $f: \mathbf{N} \to \mathbf{N}$ be defined by:

$$f(n) = \begin{cases} \frac{n+1}{2} & \text{if } n \text{ is odd,} \\ \frac{n}{2} & \text{if } n \text{ is even} \end{cases}$$

State whether the function f is bijective. Justify your answer.

Solution:

• Injectivity (One-one):

If n_1 and n_2 are both odd, or both even, then $f(n_1) = f(n_2)$ implies $n_1 = n_2$. However, if n_1 is odd and n_2 is even, their function values are different, so the function is injective.

• Surjectivity (Onto):

For every natural number $m \in \mathbb{N}$, we can find an $n \in \mathbb{N}$ such that f(n) = m. If m is odd, n = 2m - 1; if m is even, n = 2m. Therefore, the function is surjective.

• Conclusion:

Since the function is both injective and surjective, it is bijective.

10. Let $A = \mathbf{R} - \{3\}$ and $B = \mathbf{R} - \{1\}$. Consider the function $f: A \to B$ defined by $f(x) = (\frac{x-2}{x-3})$. Is f one-one and onto? Justify your answer.

Solution:

• Injectivity (One-one):

Assume $f(x_1) = f(x_2)$.

$$\frac{x_1 - 2}{x_1 - 3} = \frac{x_2 - 2}{x_2 - 3}$$

Cross-multiply and simplify:

$$(x_1-2)(x_2-3) = (x_2-2)(x_1-3)$$

Expanding both sides and simplifying, we eventually get $x_1 = x_2$, so the function is injective.

• Surjectivity (Onto):

For any $y \in B$, solve $y = \frac{x-2}{x-3}$ for x:

$$y(x-3) = x-2 \implies yx-3y = x-2$$

Rearranging, (y-1)x = 3y - 2, so:

$$x = \frac{3y - 2}{y - 1}$$

This solution is valid for all $y \neq 1$, which covers the codomain $B = \mathbf{R} - \{1\}$. Hence, the function is surjective.

• Conclusion:

The function is both injective and surjective, so it is bijective.

- 11. Let $f : \mathbf{R} \to \mathbf{R}$ be defined as $f(x) = x^4$. Choose the correct answer.
 - (A) f is one-one onto
 - (B) f is many-one onto
 - (C) f is one-one but not onto
 - (D) f is neither one-one nor onto

Solution:

• Injectivity:

The function $f(x) = x^4$ is not injective because f(-x) = f(x). For example, f(1) = f(-1) = 1. So, it is not one-one.

• Surjectivity:

The range of $f(x) = x^4$ is $[0, \infty)$, meaning the function does not

map to negative values. Thus, it is not surjective.

• Conclusion:

The correct answer is (D): f is neither one-one nor onto.

- 12. Let $f : \mathbf{R} \to \mathbf{R}$ be defined as f(x) = 3x. Choose the correct answer.
 - (A) f is one-one onto
 - (B) f is many-one onto
 - (C) f is one-one but not onto
 - (D) f is neither one-one nor onto

Solution:

Injectivity (One-one):

To determine if the function is injective, we need to check if $f(x_1) = f(x_2)$ implies $x_1 = x_2$:

$$f(x_1) = f(x_2) \implies 3x_1 = 3x_2 \implies x_1 = x_2$$

Therefore, the function is injective.

Surjectivity (Onto):

To determine if the function is surjective, we need to check if for every $y \in \mathbf{R}$, there exists an $x \in \mathbf{R}$ such that f(x) = y:

$$y = 3x \implies x = \frac{y}{3}$$

For every $y \in \mathbf{R}$, $x = \frac{y}{3}$ is a real number, so the function f is surjec-

tive.

Conclusion:

The function f(x) = 3x is both injective and surjective. Therefore, it is **bijective**, which means it is one-one and onto.

Thus, the correct answer is:

(A) f is one-one onto.

28